رده‌ها Relevance logics

implication fragment of R

دیسه‌ای
𝑅→
R→

1.𝐴→𝐴 A→A A→Aidentityaxiom▲ Logic N⁎
2.𝐴→(𝐴∨𝐵) | 𝐵→(𝐴∨𝐵) A→(A∨B) | B→(A∨B) A→(A∨B) | B→(A∨B)∨ Introductionaxiom▲ Logic N⁎
3.(𝐴∧𝐵)→𝐴 | (𝐴∧𝐵)→𝐵 (A∧B)→A | (A∧B)→B (A∧B)→A | (A∧B)→B∧ Eliminationaxiom▲ Logic N⁎
4.((𝐴→𝐵)∧(𝐴→𝐶))→(𝐴→(𝐵∧𝐶)) ((A→B)∧(A→C))→(A→(B∧C)) ((A→B)∧(A→C))→(A→(B∧C))∧ Introductionaxiom▲ Logic B
5.((𝐴→𝐶)∧(𝐵→𝐶))→((𝐴∨𝐵)→𝐶) ((A→C)∧(B→C))→((A∨B)→C) ((A→C)∧(B→C))→((A∨B)→C)∨ Eliminationaxiom▲ Logic B
6.𝐴→((𝐴→𝐵)→𝐵) A→((A→B)→B) A→((A→B)→B)Assertionaxiom
7.(𝐴→(𝐴→𝐵)) → (𝐴→𝐵) (A→(A→B)) → (A→B) (A→(A→B)) → (A→B)Contractionaxiom
8.𝐴→𝐵 → (𝐵→𝐶)→(𝐴→𝐶) A→B → (B→C)→(A→C) A→B → (B→C)→(A→C)Suffixingaxiom
9.𝐵→𝐶 → ((𝐴→𝐵)→(𝐴→𝐶)) B→C → ((A→B)→(A→C)) B→C → ((A→B)→(A→C))Prefixingaxiom
10.(𝐴→(𝐵→𝐶)) → (𝐵→(𝐴→𝐶)) (A→(B→C)) → (B→(A→C)) (A→(B→C)) → (B→(A→C))Permutationaxiom
گسترش‌ها Logic R

تاربرگ‌های پیموده‌شده در این نشست: Linear Logic Model theory Data structures neural network Principle of bivalence Knowledge Representation and Reasoning